
Chromosomes undergo essential changes in morphol-
ogy that promote proper expression and maintenance 
of the genome. These changes are mediated, in part, 
by structural maintenance of chromosomes (SMC) 
proteins that restructure the genome by promoting 

mailto:bjmeyer@berkeley.edu


http://www.uniprot.org/uniprot/P49711


Nucleolus
A subnuclear region in  
which components of the 
translational machinery are 
synthesized. It is a site of 
abundant transcription by  
RNA polymerase I and III.

Transvection
The ability of a gene on one 
chromosome to influence  
the activity of an allele on the 
opposite chromosome when 
the chromosomes are paired.

variation in the efficiency of RNAi knockdown in dif-
ferent cell types. CTCF depletion does not obviously 
affect SCC or the total quantity of chromosomally 
bound cohesin but rather disrupts cohesin accumula-
tion at known insulator sites and other CTCF-bound 
sites genome-wide5,6. Therefore, CTCF may serve pri-
marily to position cohesin complexes once loaded2. The 
links among CTCF, cohesin and interphase chromosome 
structure have been extensively reviewed2,11,16.

Although the majority of CTCF-binding sites in 
mammalian cells are also occupied by cohesin5–7, a sub-
stantial fraction of cohesin binding occurs independently 
of CTCF in differentiated human cells17. Analysis of two 
human cell lines found that many such sites occurred at 
tissue-specific genes and colocalized with binding sites 
for known master regulators of tissue-specific expression, 
such as the oestrogen receptor (ER)-α17. The established 
role of the ER in chromosome looping18, combined with 
correlative evidence that cohesin preferentially binds to 
the base of ER-mediated loop anchors17, supports the 
existence of CTCF-independent roles for cohesin in  
the formation of intrachromosomal loops.

Suggestions of SCC-independent roles for cohesin 
also arose from genetic screens in budding yeast that 
identified mutant alleles of SMC1 and SMC3. These 
mutations caused chromatin silencing to spread beyond 
heterochromatin barrier elements (BOX 3) flanking the 
silent mating-type locus HMR19. 3C experiments sug-
gested that these barrier elements interact to form the 
stem of a chromosomal loop that contains the silent 
mating-type locus20
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Polytene chromosomes
DNA structures containing 
many paired sister chromatids, 
which are produced by 
multiple rounds of DNA 
replication without cell division.

Supercoils
Twists applied to DNA that can 
occur in the same (positive) or 
opposite (negative) orientation 
to the double helix.

programmed disassembly of polytene chromosomes into 
unpaired chromatids, which occurs in interphase during 
ovarian nurse-cell development31. It is unknown whether 
condensin I acts similarly.

Collectively, these data show that during interphase, 
condensin both promotes clustering of dispersed loci 
into subnuclear domains and inhibits associations 
between homologues. In the latter case, parallels can be 
drawn with the mitotic role of condensin in preventing  
DNA entanglements between segregating chromo-
somes. This mitotic role is thought to involve the 
introduction of positive supercoils to compact chromo-
somes, which raises the possibility that the inhibition of 
trans interactions during interphase could occur by a  
related mechanism.

SMC complexes in gene expression
The findings outlined above demonstrate the roles 
of condensin and cohesin in establishing the proper 
architecture of interphase chromosomes. The impact of 
chromosome topology has been most extensively stud-
ied in the context of gene expression, although chromo-
some architecture is likely to influence a wide range of  
interphase processes.
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Position effect variegation
Variegated expression patterns 
that arise owing to intercellular 
differences in epigenetic gene 
silencing, typically observed 
when reporter genes are 
brought into proximity with 
heterochromatin.

Genomic imprinting
Epigenetic marks that are 
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b  Allele-specific chromatin looping at the imprinted IGF2–H19 locus



Axon pruning
The selective loss of  
neuronal outgrowths to  
refine synaptic connectivity 
during development.

Genetic mosaics
Animals in which homozygous 
mutations are carried by  
only a small clone of cells.

Axial elements
Linear structures that 
assemble along the length  
of meiotic chromosomes.  
Axial elements become the 
lateral elements of the mature 
synaptonemal complex.

Cohesin in immune-cell differentiation. Mechanistic 
insights into the developmental roles of cohesin and 
CTCF came from studies of helper T (TH) cell differ-
entiation, an ex vivo model of development. Upon dif-
ferentiation of naive, non-polarized CD4 T cells into 
C-C chemokine receptor type 5 (CCR5)-positive TH1 
cells, the interferon-γ (IFNG) locus becomes ‘poised’ 
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Synaptonemal complex
A proteinaceous structure  
that forms between pairs of 
homologous chromosomes 
during synapsis and facilitates 
crossover recombination.

Separase
A cysteine protease that 
cleaves the 
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Condensin loading. Metazoans possess at least two 
condensin complexes (BOX 1). With the exception of the  
C. elegans DCC, which is loaded by proteins under  
the control of a sex-specific developmental switch (FIG. 1), 
genome-wide localization data are not presently avail-
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